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Abstract

Atlantic cod (Gadus morhua) populations in the Gulf of Maine (GoM) are at a fraction of their

historical abundance, creating economic hardships for fishermen and putting at risk the

genetic diversity of the remaining populations. An understanding of the biocomplexity

among GoM populations will allow for adaptive genetic diversity to be conserved to maxi-

mize the evolutionary potential and resilience of the fishery in a rapidly changing environ-

ment. We used restriction-site-associated DNA sequencing (RADseq) to characterize the

population structure and adaptive genetic diversity of five spawning aggregations from the

western GoM and Georges Bank. We also analyzed cod caught in the eastern GoM, an

under-sampled area where spawning aggregations have been extirpated. Using 3,128 sin-

gle nucleotide polymorphisms (SNPs), we confirmed the existence of three genetically sep-

arable spawning groups: (1) winter spawning cod from the western GoM, (2) spring

spawning cod, also from the western GoM, and (3) Georges Bank cod. Non-spawning cod

from the eastern GoM could not be decisively linked to either of the three spawning groups

and may represent a unique component of the resource, a mixed sample, or cod from other

unsampled source populations. The genetic differentiation among the three major spawning

groups was primarily driven by loci putatively under selection, particularly loci in regions

known to contain genomic inversions on linkage groups (LG) 7 and 12. These LGs have

been found to be linked to thermal regime in cod across the Atlantic, and so it is possible

that variation in timing of spawning in western GoM cod has resulted in temperature-driven

adaptive divergence. This complex population structure and adaptive genetic differentiation

could be crucial to ensuring the long-term productivity and resilience of the cod fishery, and

so it should be considered in future management plans.
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Introduction

Identifying stock boundaries of marine populations remains a challenge despite rapid

advances in genetic stock identification methods due to the considerable complexity in the

population structure of many marine species [1]. Most marine fishery resources are character-

ized by large population sizes and high dispersal ability, resulting in subtle patterns of popula-

tion differentiation [2,3], the characterization and interpretation of which is complex [4].

Given advances in sequencing technologies, thousands to millions of genetic markers can now

be used to study population structure, enabling high-resolution interpretations.

Gene flow is often used to infer demographic connectivity, so that groups connected by

high gene flow are often considered as one continuous stock. However, populations can be

demographically independent despite high gene flow [4]. Further, populations connected by

high gene flow may lack genetic differentiation at neutral genomic markers yet exhibit differ-

entiation at adaptive loci as a result of divergent selection pressures. Patterns of gene flow and

adaptive genetic diversity contribute to biocomplexity among stocks in life history, morphol-

ogy, and local adaptation that may be highly relevant to fisheries management [5–7]. Accord-

ingly, there may be unique ecological and functional diversity among stocks [8–11] the

maintenance of which could be key to ensuring adaptive capacity or evolutionary potential

[12,13]. Biocomplexity may also confer resilience; loss of intra-specific genetic diversity has

been linked to reduced population stability and reduced resilience to exploitation and chang-

ing environmental conditions [5,11,14–16]. The U.S. Endangered Species Act mandates that

populations divergent at putatively adaptive loci warrant designation as separate management

units even if they appear panmictic at neutral loci. Therefore, stock identification for fisheries

management should aim to use thousands of genetic loci to aid in assessing biocomplexity,

including both neutral and adaptive genetic diversity, among populations, especially in regions

experiencing rapid environmental change.

Population structure of Atlantic cod (Gadus morhua) is complex [1,17] and many investiga-

tions of the various populations and ecotypes that co-exist across the North Atlantic have

made cod a canonical example of biocomplexity in a marine species. In U.S. waters, there is

considerable biocomplexity in cod stocks [18–22] that is not reflected in the current stock

assessment and management structure in place since 1972. The two management units consist

of: 1) cod from Georges Bank, offshore of Cape Cod, and in the waters of southern New

England; and 2) a group consisting of cod from the western, central, and eastern GoM (Fig 1).

However, genetic data [23–28], differences in growth rates [29,30], timing of spawning

[19,31], larval dispersal patterns [32,33], movement patterns [18,34–36], spawning site fidelity

[37–39], and differences in life history strategy [40,41] all confirm that there is biocomplexity

in US cod that conflicts with the stock designations (for a review see REF 20). The misalign-

ment of stock designations with this biocomplexity is implicated as a contributing factor in the

failure of these stocks to rebuild despite decades of intensive management [42].

Populations of Atlantic cod in the Gulf of Maine (GoM) are at a fraction of their historical

abundance [22,43]. Currently, cod biomass is estimated at just 5–8% of its target level [43] and

the fishery has been declared an economic disaster. Overexploitation has been implicated as

one factor in the extirpation of historical spawning components in the GoM [19] and the low

biomass of the remaining components puts the fishery at risk, especially as the GoM is warm-

ing faster than 99% of the global ocean [44–46]. Cod productivity appears to be closely linked

to temperature [44,47,48] and adaptive diversity is likely going to be key for the resilience of

the fishery in the face of this rapid ecosystem change.

In their investigation of genetic stock structure in the GoM using microsatellites, Kovach

et al., [23] found genetic differentiation among spawning aggregations in the GoM, primarily
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stemming from outlier loci. This structure included differentiation among subpopulations that

overlap spatially but differ in spawning season (i.e., genetically distinct winter- and spring-

spawning populations). Barney et al., [24] also found that adaptive variation played a key role

differentiating two spawning populations in the western GoM and one on Georges Bank, with

differentiation in regions of the genome that were in high linkage disequilibrium (LD) on link-

age groups (LG) 2, 7 and 12. These LD blocks are chromosomal inversions [49–51] and have

been previously found to segregate between populations of cod in other regions spatially [52–

55], temporally [6,56], between stationary and migratory ecotypes [50,51,54,55,57,58], and

have been linked to spatial clines in temperature across the North Atlantic [52,53]. Therefore,

despite potential gene flow among subpopulations within the GoM, there is growing evidence

for adaptive differentiation among spawning aggregations [23,24].

To date, no genetic studies have focused on cod in the eastern GoM (from US waters off

midcoast and eastern Maine). Ames’ [19] analysis of historical fishing grounds suggested that

cod previously found in these areas comprised separate spawning components that were likely

discrete from cod in the western GoM. Spawning components within the eastern GoM have

been functionally extirpated [19] and since 2010, the Maine Center for Coastal Fisheries’ Senti-

nel Hook Survey Fishery has monitored cod abundance in the region to determine whether

stocks are rebuilding [59,60]. Although spawning aggregations have not been observed

recently, cod caught by the sentinel survey allow an opportunity to determine the level of con-

nectivity between the eastern GoM and other regions. Characterizing the connectivity of these

eastern GoM cod with the more robust western populations is vital for understanding the

metapopulation structure of cod in the GoM and their potential for recovery [20].

In this study, we used genome-wide genetic data to analyze both the neutral and putatively

adaptive population structure of cod in the GoM. We sampled seasonally divergent spawning

Fig 1. Locations of Atlantic cod groups analyzed in this study. Samples from Ipswich and Massachusetts Bays and

Georges Bank were from known spawning grounds (dark gray circles), whereas the sentinel fishery targeted non-

spawning cod in the eastern GoM (circled region). We do not have exact catch locations for all of the eastern GoM

samples, as fishermen were not required to declare them, and so we show the overall area in which they were caught.

The management unit boundaries of the GoM, Georges Bank, and Scotian Shelf are indicated by the thin black lines.

https://doi.org/10.1371/journal.pone.0216992.g001
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aggregations in the western GoM to characterize gene flow and adaptive divergence between

populations that spawn in the same locations but in different seasons. We also investigated

connectivity among these western GoM spawning aggregations, a Georges Bank spawning

aggregation, and cod caught by the sentinel fishery in the eastern GoM that were not in spawn-

ing condition. If there were distinct subpopulations in the eastern GoM, as hypothesized

[19,20], and the cod caught in these areas today are remnants or resurgent of these subpopula-

tions, then they could still harbor unique genetic signatures even if they were not spawning at

the time of sampling. Alternatively, a lack of differentiation of eastern GoM fish may suggest

that there has been contemporary movement of individuals into the eastern GoM, or that

these fish were never in fact distinct from other regions.

Methods

Sample collection

For the western GoM, fin clip samples from spawning adult cod were collected on known

spawning grounds in Ipswich and Massachusetts Bays at two distinct spawning seasons–late

spring (May/June) and winter (December/January; Table 1). The National Marine Fisheries

Service granted the GMRI permission to collect samples during fisheries closures for the sole

purpose of scientific research via a Scientific Research Letter of Acknowledgment. The fishing

vessel F/V Ellen Diane was not subject to the Magnuson-Stevens Act or fishery regulations at

50 CFR part 648 while collecting samples for scientific research. For Georges Bank, we used

archived DNA samples from the study of Kovach et al., [23]. These samples were collected by a

survey conducted by Canada’s Department of Fisheries and Oceans from spawning adults on

the Northeast Peak in February 2006 and, although there is a temporal mismatch between

these and the other samples used in this study (Table 1), previous work [23] and this study

shows temporal stability in the population structure in the region. For the eastern GoM, fin

clip samples were collected from non-spawning cod caught in the sentinel fishery survey from

stations located throughout mid-coast and Downeast Maine, with a majority of the samples

from the inshore and nearshore areas and few collected from offshore (Fig 1). Maturity stages

were defined based on [61].

Library preparation and sequencing

DNA was extracted from fin clips with a Qiagen DNeasy Tissue Kit (Qiagen, Valencia, CA,

USA), following the manufacturer’s protocols. RAD libraries were prepared and sequenced by

Floragenex Inc. (Eugene, OR, USA), following standard protocols of [62]. Libraries were

Table 1. Information about the samples analysed in this study.

Name Sampling site Collection date Spawning conditions of individuals N

Ipswich Bay spring Ipswich Bay May 2015 2R, 13U. 15

Ipswich Bay winter Ipswich Bay December 2014 2D, 5R, 16U, 1S 24

Massachusetts Bay spring Massachusetts Bay May & June 2013 3R, 18U, 3S 24

Massachusetts Bay winter Massachusetts Bay December 2013 2D, 14R, 5U, 3S 24

Georges Bank NE Georges Bank February 2006 6R, 12U 18

Eastern Gulf of Maine Mid-coast to Downeast Maine June, July & August 2014;

June & August 2015

Unknown

(non-spawning)

23

Spawning conditions: D = developing, R = ripe, U = ripe and running, S = spent.

N = number of individuals included in final dataset.

https://doi.org/10.1371/journal.pone.0216992.t001
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prepared from 50 μL of DNA per sample with concentrations of 10–20 ng/μl. Restriction

digestion was performed with the SbfI enzyme and 300–500 base pair fragments were size

selected. Individual DNA samples were barcoded with uniquely indexed nucleotides, to allow

for the pooling of 95 multiplexed individuals per library. The resulting RAD libraries were

sequenced on two lanes of an Illumina HiSeq using Illumina 1 x 100 bp chemistries.

Bioinformatics

Raw read quality was assessed with FastQC [63] and reads were demultiplexed using the pro-

cess_radtags function from the Stacks v1.35 pipeline [64,65]. Adapter trimming and quality fil-

tering were performed with skewer [66] using the following settings: trim adapters found

anywhere in a read (-m any), maximum allowed error rate = 0.1 (-r 0.1), trim 3’ end until min-

imum quality of 20 is reached (-q 20), trim reads with mean quality < 20 (-Q 20), minimum

read length allowed after trimming = 40 (-l 40), filter highly degenerative reads (-n). After this

filtering, 15 individuals with fewer than 800,000 reads remaining were discarded from further

analysis. These individuals had significantly fewer reads than other individuals and initial sin-

gle nucleotide polymorphism (SNP) calling trials resulted in more than 30% missing data for

these individuals. Therefore, to retain the maximum number of loci, we discarded these indi-

viduals before performing our final SNP calling and SNP filtering.

SNP calling was performed using the ipyrad v0.7.21 pipeline [67] mapping to the cod refer-

ence genome (gadMor2; [68]). This pipeline uses bwa-mem [69] with default settings for align-

ment to the reference genome and discards reads that do not map uniquely. We set the

minimum depth per locus to five reads and the maximum to 50,000 reads within individuals.

We set this high maximum depth filter due to the high depth of sequencing that some of our

samples received (Figure A in S1 Appendix). Additional maximum depth filters were applied

downstream (see below) to remove potential paralogs. We specified that a locus had to be

shared by at least 70% of individuals in each group to be included in the final dataset, while all

other ipyrad settings were left as defaults, including the maximum heterozygosity filter of 0.5.

After SNP calling, SNPs were further filtered using vcftools v0.1.15 [70] so that the final

dataset included only: biallelic SNPs; one SNP per RADtag; SNPs with a minor allele

frequency� 5%; SNPs with less than 30% missing data per sampling location; SNPs with

mean depth less than two standard deviations above the mean to avoid paralogs; and SNPs

that were in Hardy-Weinberg equilibrium in at least half of the groups at the p< 0.01 signifi-

cance level. PGDSpider [71] was used to convert the data between formats for downstream

analyses.

Putatively neutral SNP selection

To identify a putatively neutral SNP dataset for determining gene flow among groups, we first

thinned the data using vcftools such that SNPs were at least 10 kb apart to avoid tightly linked

SNPs. We then used the FST outlier method implemented in BayeScan [72] to identify outlier

loci. We set the prior-odds of neutrality to 10 to favor the detection of outliers and used a q-

value cut-off of 0.05 (this means 5% of identified loci are expected to be false positives). Fur-

thermore, we removed SNPs located within regions of the genome with putative inversions.

These inverted regions have elevated linkage disequilibrium, including inter-chromosomal

linkage disequilibrium [73], and in some cases show elevated FST among spawning aggrega-

tions within the GoM [24]. Therefore, we discarded SNPs within these regions as well as the

FST outliers, to create our putatively neutral SNP dataset, hereafter “neutral dataset”. Further

analyses were conducted with and without these outlier loci and are referred to as the full data-

set and neutral dataset, respectively.
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Population structure

Pairwise FST values between groups were calculated for the neutral and full SNP datasets with

the Hudson estimator as it has been shown to be insensitive to variation in sample sizes and

was found to be unbiased when tested on SNP datasets [74,75]. To calculate the Hudson esti-

mator, we used the R script of Di Gaetano et al., [76], correcting for an error on line 14, and

modified the script to estimate bootstrapped confidence intervals with 1000 replicates, using

the ‘boot’ package in R and the percentile method for the confidence interval.

Population structure was visualized with both datasets using a principal components analy-

sis (PCA), performed using the adegenet v2.1.1 packages in R [77–79]. Before performing the

PCA, allele frequencies were scaled and centered using the scaleGen function, and missing val-

ues were replaced by the mean allele frequency. PCA was performed with the dudi.pca
function.

Discriminant Analysis of Principal Components (DAPC, REF 78) was also performed to

assess genetic differentiation. The find.clusters algorithm suggested the most likely number of

clusters within the data was equal to one (K = 1) for both datasets, suggesting population dif-

ferentiation was subtle, and so we used the a priori clustering of individuals by group instead.

The number of principal components (PCs) to retain was estimated by cross-validation using

the xvalDAPC function with 1000 replicates [80].

To verify that variation in sequencing depth and missing data did not produce erroneous

signals of population structure, we created a more stringent SNP dataset, subsetting the

final SNP dataset for SNPs with less than 5% missing data across all sampling locations and

repeated the DAPC analysis, as above. With this stringent SNP dataset, we also recoded miss-

ing data as 1 and genotypes as 0 and performed a PCA using the prcomp() function in R, scal-

ing and centering the data, to check that patterns of missing data were not driving population

structure.

Structure v2.3.4 [81] was also used to find clusters in the full and neutral SNP datasets and

to estimate the proportion of ancestry individuals inherited from each cluster, effectively

assigning individuals to clusters. The admixture model with correlated allele frequencies

was used in all cases, as we expected to find a high level of admixture and gene flow among

groups. An initial run was performed with K = 1, allowing lambda to vary, to estimate the

value of lambda that was then set in all subsequent runs. Structure was run both with and

without sampling locations as priors to differentiate between subtle and strong population dif-

ferentiation, and values of K from one to six were tested. Each analysis was run for 150,000

generations, discarding the first 50,000 as burn-in, and repeated ten times from a random seed

for each value of K. Structure Harvester web v0.6.94 [82] was used to compare replicates, calcu-

late the most likely value of K according to the Evanno method [83], and prepare files for

CLUMPP [84]. CLUMPP aligns the results from replicate runs of Structure to check for multi-

modality and calculates the average membership coefficients of individuals to each cluster,

ready for visualization with DISTRUCT v1.1 [85]. To check for hierarchical structure, we

removed groups that appeared differentiated and then repeated the Structure analysis on the

remaining groups.

To investigate patterns of genetic differentiation throughout the genome, we created Man-

hattan plots using the R package qqman for locus-specific FST values from the full dataset for

all pairwise comparisons between groups. Locus-specific FST was calculated using the Weir

and Cockerham [86] estimator in vcftools. Spring and winter spawning individuals from Ips-

wich Bay and Massachusetts Bay were grouped together into “spring spawners” and “winter

spawners” for these comparisons due to the genetic similarity between bays in the same

season.
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Results

Sequencing, SNP calling, and filtering

After discarding individuals with low read counts, we called SNPs in a total of 128 individuals

across our six sampling locations (Table 1). The average number of reads per individual was

3.34 million (range: 0.87–12.18 million), with on average 84% of reads retained after quality

control, adapter trimming, and mapping. Despite uneven sequencing depth among individuals

and groups (Figure A in S1 Appendix), patterns of population structure did not correspond to

these differences in sequencing depth or the lane in which individuals were sequenced, indicat-

ing that the patterns of population structure were robust. For example, spring spawners from

Ipswich Bay, which received high coverage and were sequenced in lane 1, were genetically

most closely related to spring spawners in Massachusetts Bay (see Population structure sec-

tion), which had received much lower coverage and were sequenced in lane 2.

We initially identified 73,495 SNPs across all RADtags using Ipyrad. After SNP filtering, we

retained 3,128 SNPs which had a mean sequencing depth of 77.5X when averaging across all

individuals (range 20.8–113 X, Figure B in S1 Appendix). This comprised our full SNP dataset

which included potentially adaptive loci (Table A in S1 Appendix) and loci with up to 30%

missing data per sampling location. To further verify that variation in sequencing depth and

missing data did not produce erroneous signals of population structure, we further subsetted

this dataset to remove SNPs with more than 5% missing data, creating a stringent SNP dataset

of 1,660 SNPs. To obtain the neutral dataset, we thinned our full SNP dataset to remove any

SNPs that were < 10kb apart, removed an additional 47 SNPs that were identified as outliers

(the details of these are available on figshare: https://doi.org/10.6084/m9.figshare.7683938.v1)

and another 106 SNPs located in regions in high linkage disequilibrium on LG 2, 7, and 12.

This resulted in a neutral dataset of 2,689 SNPs.

Population structure

When we used the full dataset, which included the neutral SNPs plus the 106 SNPs in inverted

regions on LG 2, 7 and 12, and 47 outlier SNPs identified by BayeScan, all pairwise FST values

between sampling locations were small, but confidence intervals did not overlap zero

(Table 2). Comparisons between the bays in the western GoM showed stronger differentiation

by spawning season than geographic location. Georges Bank was more differentiated from the

western GoM than the eastern GoM. Lastly, the eastern GoM showed similar levels of differen-

tiation with the western GoM winter spawners as with Georges Bank, but higher differentia-

tion with the western GoM spring spawners.

Table 2. Pairwise FST values among all sampling locations, estimated using the Hudson estimator and the full SNP dataset. The weighted mean value is given above

and the confidence interval is given below.

Ipswich Bay spring Massachusetts Bay spring Ipswich Bay winter Massachusetts Bay winter Georges Bank

Massachusetts Bay spring 0.0073

0.0045–0.0108

Ipswich Bay winter 0.0185 0.0166

0.0142–0.0233 0.0132–0.0199

Massachusetts Bay winter 0.0173 0.0158 0.0085

0.0133–0.0221 0.0126–0.0194 0.0069–0.0103

Georges Bank 0.0202 0.0190 0.0148 0.0157

0.0154–0.0255 0.0148–0.0241 0.0116–0.019 0.0125–0.0197

Eastern GoM 0.0151 0.0171 0.0070 0.0101 0.0079

0.0111–0.0192 0.0131–0.0220 0.0042–0.0106 0.0072–0.0139 0.0057–0.0100

https://doi.org/10.1371/journal.pone.0216992.t002
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Results from PCA and DAPC showed patterns consistent with those described by the pair-

wise FST comparisons and differentiation of the spring spawners. Individual scores formed

three clusters on the PCA along PC1 (Fig 2A), which explained 1.6% of the variance. This

three-cluster pattern is typical when there are two alternate forms of a large, high linkage dis-

equilibrium genomic block driving genetic differentiation, because individuals can effectively

be genotyped as having either of the homozygous states (clusters at the extremes of PC1) or

Fig 2. Population differentiation using the full SNP dataset that includes both neutral and outlier SNPs. a) PCA including all individuals, b) DAPC

including all individuals, c) PCA after the Massachusetts Bay outlier individuals were removed, d) DAPC after the same Massachusetts Bay outlier individuals

were removed. The percentage of the variation explained by each principle component is shown on the axis labels for the PCAs, and the cumulative percentage

of variation explained by the discriminant functions is shown on the inset graphs for the DAPCs. The number of principle components retained in b) was 20

and in d) was 26, as assessed using cross-validation.

https://doi.org/10.1371/journal.pone.0216992.g002
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the heterozygous state (the cluster in the middle of PC1). Spring spawners from Ipswich and

Massachusetts Bays were found in the middle and right-hand cluster and shifted towards the

upper right-hand corner of the plot; winter spawners were only found in the middle and left-

hand cluster and were shifted towards the lower left-hand corner of the plot. Similar to the

spring spawners, winter spawners from Ipswich and Massachusetts Bays overlapped with one

another. Georges Bank and eastern GoM cod were found in all three clusters, but towards the

lower half of the plot where the winter spawners were also found. There was no additional

clustering in the PCA when other PCs were plotted. SNP loadings (Figure C in S1 Appendix)

revealed that SNPs in the inverted region on LG 7 were largely responsible for the patterns

along PC1, while SNPs in the inversion on LG 12 differentiated individuals along PC2. A single

SNP on LG18 also seemed to have a large effect in differentiating populations on PC1. The

clusters on the far left and right of PC1 correspond to individuals homozygous for the inverted

and non-inverted regions of LG 7, while individuals in the middle cluster are heterozygous for

the inversion. The differentiation along PC2 is the result of similar patterns stemming from

the inversion on LG12.

DAPC provided an informative way to visualize these patterns of differentiation among the

groups (Fig 2B). Spring spawners tended to group together into one cluster, winter spawners

into a second cluster, and Georges Bank and eastern GoM into a third cluster when individuals

were assigned to their a priori sampling group. The same clustering was also observed when

the DAPC was repeated with the stringent SNP dataset of 1,660 loci (i.e. SNPs with only 5%

missing data; Figure D in S1 Appendix) and there was no structure in the missing data

(Figure E in S1 Appendix), confirming that the population structure we observed had a biolog-

ical basis. The PCA plot using the full SNP dataset, and to a lesser degree the DAPC plot,

revealed two individuals in the Massachusetts Bay winter spawning aggregation that appeared

to be more genetically divergent than all others. We therefore removed these outliers and

repeated both analyses (Fig 2C and 2D). The patterns we observed were stable after removal of

these outlier individuals.

The differentiation of the spring spawners was also evident in a Structure analysis using the

full SNP dataset. When K (number of populations) was varied from two to four, the spring

spawners appeared differentiated from other groups (Fig 3). This pattern was evident in analy-

ses both with location priors (Fig 3) and without location priors (Figure F in S1 Appendix). The

Evanno method suggested K = 2 was the most likely value of K in both cases, although the esti-

mated posterior probability of the data increased up to K = 4 (Figures F and G in S1 Appendix).

Neutral population structure

When we analyzed the data after removing the 47 outlier SNPs and the 106 SNPs on LG 2,7,

and 12 within the inversions, pairwise FST values among all groups were much smaller than for

the full dataset. FST values were close to zero with the neutral dataset, although the confidence

intervals again did not overlap zero, suggesting the possibility of some fine-scale differentiation

among groups (Table 3). Pairwise FST was almost the same for two comparisons: Georges

Bank versus eastern GoM and Ipswich Bay winter versus Massachusetts Bay winter (Table 3).

The results could suggest that cod in these pairs of populations were under similar selection

pressures to one another, since the inclusion of outlier SNPs did not change the levels of

genetic differentiation between these pairs. Georges Bank and Massachusetts Bay winter

spawners had on average slightly higher pairwise FST values compared to most other compari-

sons, suggesting subtle neutral differentiation of these two populations.

PCA and DAPC provided much less evidence for genetic differentiation among groups at

putatively neutral SNPs in comparison to the analyses with the full dataset (Fig 4). PCA
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showed some limited patterns of neutral differentiation, with the Massachusetts Bay winter

individuals clustering to the left and to a lesser extent the Ipswich Bay winter individuals clus-

tering to the lower right portion of the plot (Fig 4A). DAPC suggested weak separation of

Georges Bank, Massachusetts Bay spring, and Massachusetts Bay winter, with individuals from

Ipswich Bay spring and winter and eastern GoM grouping together in the central portion of

the plot (Fig 4B). Removal of the two outlier individuals from the Massachusetts Bay dataset

caused most of the differentiation of Massachusetts Bay winter to disappear (Fig 4C and 4D)

and caused the pattern in the DAPC to largely collapse, with a weak separation of Georges

Fig 3. Individual assignment probabilities of sampled Atlantic cod to genetic clusters identified by Structure

analysis. Bar plots show aggregated results for K = 2–4 from ten replicate runs using the full SNP dataset, which

includes both neutral and outlier SNPs, with location priors. Geographic sampling locations are indicated below.

https://doi.org/10.1371/journal.pone.0216992.g003

Table 3. Pairwise FST values estimated using the Hudson estimator and the neutral SNP dataset. The weighted mean value is given above and the confidence interval

is given below.

Ipswich Spring Massachusetts Bay Spring Ipswich Winter Massachusetts Bay Winter Georges Bank

Massachusetts Bay Spring 0.0047

0.0027–0.0067

Ipswich Winter 0.0059 0.0068

0.0038–0.0080 0.0050–0.0088

Massachusetts Bay Winter 0.0074 0.0097 0.0081

0.0053–0.0095 0.0077–0.0117 0.0062–0.0100

Georges Bank 0.0082 0.0079 0.0090 0.0118

0.0056–0.0109 0.0058–0.0102 0.0067–0.0112 0.0097–0.0140

Eastern GoM 0.0032 0.0052 0.0037 0.0070 0.0071

0.0011–0.0052 0.0036–0.0067 0.0021–0.0054 0.0053–0.0087 0.0050–0.0093

https://doi.org/10.1371/journal.pone.0216992.t003
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Bank and the two spring spawning populations remaining and broad overlap of the other

three groups.

The lack of clear differentiation at neutral loci was also apparent with our Structure analyses

(Figure H in S1 Appendix). The Evanno method for determining the ‘true’ value of K sug-

gested K = 2 was most likely for analyses both with and without location priors. At values of

K from two to four, the outlier individuals in Massachusetts Bay winter were assigned to a

separate cluster, while other populations did not show clear patterns of differentiation

(Figure H in S1 Appendix). This is not surprising since the neutral genetic differentiation

among these populations is subtle and Structure is known to perform poorly when FST is less

than 0.05 [87].

Fig 4. Population differentiation using the neutral dataset. a) PCA with all individuals; b) DAPC with all individuals. Removal of two outlying individuals

from Massachusetts Bay winter largely collapses all groups in both c) PCA and d) DAPC. The percentage of the variation explained by each principle

component is shown on the axis labels for the PCAs, and the cumulative percentage of variation explained by the discriminant functions is shown on the inset

graphs for the DAPCs. The number of principle components retained in b) was 24 and in d) was 13, as assessed using cross-validation.

https://doi.org/10.1371/journal.pone.0216992.g004
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Genome-wide patterns of differentiation

To investigate patterns of differentiation at the genome-wide scale, we plotted the locus-spe-

cific FST values for all pairwise comparisons between groups (with winter and spring spawners

from Ipswich Bay and Massachusetts Bay grouped together by spawning season given the

genetic similarity of these groups). Our full dataset included 62 SNPs from the inversion on

LG7 and 61 from the inversion on LG12, making it possible to see the influence that these

inversions were having on the inferred population structure (Fig 5). The inversion on LG 7

appeared to segregate between winter and spring spawners, between spring spawners and east-

ern GoM cod, and to a lesser extent between winter spawners and Georges Bank spawners.

The inversion on LG 12 appeared to segregate between spring spawners and Georges Bank

spawners, between spring spawners and eastern GoM cod, and to a lesser extent between

Fig 5. Manhattan plots showing pairwise, locus-specific FST values between groups for the full SNP dataset.

https://doi.org/10.1371/journal.pone.0216992.g005
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winter and spring spawners. Since our dataset only included 28 SNPs from the inverted region

on LG2, we were not able to make inference about the contributions of this inversion. We also

found evidence for adaptive variation outside of the known chromosomal inversions: one SNP

on LG 18 showed very high (> 0.8) FST between spring spawners and all other groups, and a

small number of SNPs on LG 11 also showed elevated FST in all comparisons except between

Georges Bank versus eastern GoM cod. Overall, comparisons between spring spawners and

other groups tended to show the most elevated FST values, while winter spawners seemed

somewhat similar to Georges Bank and eastern GoM cod, the comparison between the latter

two showing the overall lowest levels of differentiation.

To further investigate genetic differentiation in each putatively inverted region on LG 2, 7,

and 12, we extracted the SNPs within each LD block from our full SNP dataset using the

boundaries determined by Barney et al., [24]. We then repeated our PCA using those subsets

of SNPs.

The patterns from the inverted regions on LG 7 and 12 showed three well separated clusters

in the PCAs, with PC1 explaining 36.4% and 25.6% of the variation, respectively (Fig 6A and

6B). These clusters likely corresponded to the homozygous collinear ‘genotype’, the heterozy-

gous genotype (where individuals have one copy of the inversion and one copy of the collinear

region), and the homozygous inverted genotype. ‘Genotyping’ individuals for the inversion

based on which cluster they fell into showed that winter and spring spawning cod have differ-

ent frequencies of the inversions. At LG 7, spring spawners were mostly homozygotes for one

form of the inverted region (left-most cluster) and heterozygotes (middle cluster), while winter

spawners had higher frequencies of the alternative homozygous state (right-most cluster) and

many heterozygotes. Eastern GoM individuals showed a similar pattern to the winter spawn-

ers, while Georges Bank were found across all three clusters. At LG 12, spring spawners were

mainly homozygous for one form of the inversion (right-most cluster) and heterozygotes

(middle cluster), while winter spawners were mainly homozygous for the alternate allele or

heterozygotes. Georges Bank and eastern GoM individuals showed similar haplotype frequen-

cies as the winter spawners.

The PCA based on the 28 SNPs from the inversion on LG 2 was not as informative (Fig

6C), which is not surprising given the small number of SNPs and the overall lack of elevated

FST values in this region (Fig 5). However, three weakly defined clusters were visible on the

PCA that related to each of the homozygous states and the heterozygous state for the inversion.

Groups were not well differentiated with these 28 SNPs on LG 2, with members of each group

found in all three clusters, but some separation of spring spawners primarily in the left and

central cluster and winter spawners primarily within the right and central clusters could be

seen. Georges Bank individuals grouped primarily in the right and central clusters, similar to

the winter spawners, with fewer individuals in the left cluster. No additional clustering was

apparent when additional PCs were plotted for any of the LD blocks.

Discussion

Population structure

From our genome-wide analysis of population structure, we found evidence for differentiation

among three major spawning groups: cod that spawn in the spring in Ipswich and Massachu-

setts Bays, cod that spawn in the winter in the same bays, and cod spawning on the northeast

peak of Georges Bank. The spring spawning cod in the western GoM appeared to be the most

genetically differentiated from the other spawning populations. Levels of genetic differentia-

tion were low overall (small magnitude FST) and primarily driven by loci that are putatively

under selection, the majority of which were located in the genomic regions on LG 7 and 12
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containing chromosomal inversions known to be divergent among other cod populations in

both the Northeast and Northwest Atlantic [51–54,58,73]. Little genetic structure was apparent

from neutral markers alone among these populations, but Georges Bank and the spring

spawning western GoM population displayed some weak neutral differentiation. Divergence

at outlier loci despite gene flow has been observed among Atlantic cod populations in other

parts of its range [51]. Our findings suggest that selection is likely maintaining differentiation

at adaptive loci, particularly among spring spawning cod that may experience divergent selec-

tion pressures due to their different spawning season.

Fig 6. PCAs for each of the LD blocks on a) LG 7, b) LG 12, and c) LG 2. The percentage of the variance explained by

each axis is shown on the axes labels.

https://doi.org/10.1371/journal.pone.0216992.g006
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The low neutral genetic differentiation suggests that there is some level of ongoing gene

flow among these groups of cod, especially between the western GoM bays within the same

spawning season. Small but significant levels of genetic differentiation are common in marine

fishes as a result of their high dispersal potential and large effective population sizes [1,88],

which can make interpretations challenging. Even low levels of neutral genetic differentiation

can be biologically meaningful [89], but translating these low levels of genetic differentiation

into useful estimates of demographic connectivity is not easy [4]. Evidence from individually

tagged cod in the GoM supports a hypothesis of there being connectivity among the western

GoM spawning locations within the same season, as individuals tagged on the primary Massa-

chusetts Bay spring-spawning site have been recaptured or detected via acoustic telemetry in

the vicinity of other spawning sites during the spawning season [90]. Spawning site fidelity is

high [90–92], but cod may spawn in multiple nearby locations within a season [90].

Slightly greater neutral differentiation between winter and spring spawning groups and

between the western GoM spawners and Georges Bank spawners suggest that gene flow is less

prevalent among these groups. This finding is consistent with results from tagging studies,

which reveal very little movement of GoM cod to areas outside of this region [36,38,90,93],

supporting the view of demographic independence of cod in the GoM and Georges Bank.

Movement patterns of spring and winter spawning cod in the western GoM have been studied

extensively and suggest dispersal from the spawning grounds after spawning and return to the

spawning grounds during distinct spawning seasons [35,90,93], consistent with genetic differ-

entiation of these seasonal spawning groups.

Our findings agree with previous work that found significant genetic differentiation pri-

marily driven by loci putatively under selection among spawning groups in the Gulf of Maine

[23,28]. Barney et al., [24] localized this genetic differentiation to the inversions on LG 2, 7 and

12, although they focused their investigation on these genomic regions and did not investigate

differentiation elsewhere in the genome. Contrary to the findings of Barney et al., [24], but

consistent with Wirgin et al., [28] and Kovach et al., [23], we found that spring spawning cod

are the most genetically differentiated of the spawning populations in the western Gulf of

Maine and Georges Bank. This inconsistency between the studies is likely a result of small sam-

ple sizes, because Barney et al., [24] sampled ten individuals from each spawning group, so

their estimates of the inversion frequencies in each population may not have been precise.

In addition to differences in the frequency of inversions on LG 7 and 12 among the groups

studied, we found several outlier SNPs with elevated FST on LG 11 and 18, with the former seg-

regating among all three primary groups (winter spawners, spring spawners, and Georges

Bank), and the latter segregating primarily between the spring spawning groups and the others.

Our small sample of genomic SNPs was insufficient to perform a genome-wide scan for selec-

tion because a much higher density of SNPs and an estimate of genome-wide linkage disequilib-

rium would be necessary [94]. Therefore, further investigations into these outlier loci should be

conducted with a denser SNP dataset, which may uncover additional targets of selection else-

where in the genome. In a similar fashion, our ability to detect differences in the frequency of

the inversion on LG 2 was limited by the small number of SNPs we recovered in this region.

This inversion was previously found to segregate between winter and spring spawning cod in

Massachusetts Bay and to contain a number of genes that may have temperature-mediated

functions [24]. Our dataset uncovered a relatively large number of SNPs within the inversions

on LG 7 and 12, which showed frequency deviations at these sites. Differences in the frequencies

of these inversions among populations are likely the result of divergent selection because cod

are thought to have large effective population sizes [95–97] resulting in weak genetic drift.

There is a growing body of evidence from a variety of taxa that chromosomal inversions

can capture multiple adaptive alleles governing complex traits and therefore act as ‘supergenes’

Adaptive genetic variation underlies biocomplexity of Atlantic Cod in the Gulf of Maine and on Georges Bank

PLOS ONE | https://doi.org/10.1371/journal.pone.0216992 May 24, 2019 15 / 24

https://doi.org/10.1371/journal.pone.0216992


(e.g. Anopheles mosquitoes [98], three-spine sticklebacks [99], Heliconious butterflies [100]).

In Atlantic cod, the inversions on LG 1, 2, 7, and 12 that segregate as biallelic loci between cod

populations and ecotypes [49,50,54,55,57,58], may also be acting as supergenes housing suites

of genes with adaptive phenotypic effects. The inversion on LG 7 has previously been linked to

variation in temperature in both the Northwest and Northeast Atlantic [53], variation in salin-

ity and oxygen concentrations in the Baltic Sea [101], and with migratory and resident eco-

types in the Northeast Atlantic that also experience different temperature regimes [57,102].

The inversion on LG 12 has also been linked to temperature [53,55,56] and with inshore and

offshore populations on the Skagerrak coast of Norway that show variation in their tendency

to migrate [54]. Barney et al., [24] identified 306 and 407 genes within the inverted regions on

LG 7 and 12, respectively, but they did not find significant enrichment for any specific geno-

mic pathways, and so how these regions could be adaptive under different temperature

regimes is currently unknown.

Consistent with findings from other Atlantic cod populations, temperature and/or offshore

and vertical (depth) movement patterns may also be selective pressures that maintain the poly-

morphisms that we observed. Spring spawning cod in the western GoM differed from the win-

ter GoM and the Georges Bank spawners in the frequencies of the inversions on both LG 7

and 12 (and LG 2 according to REF 24), suggesting they experienced divergent selective pres-

sures from those groups. Winter spawning cod in the western GoM appeared to be under simi-

lar selective pressures as cod spawning on Georges Bank, based on more similar frequencies of

the inversions (although they are not fully connected by gene flow at neutral loci, supporting

the divergence of these spawning groups). Divergent temperature-associated selection pres-

sures could act at different life stages (e.g., egg development, larval growth, juvenile settlement,

adult migration). For example, eggs that are spawned in the spring in the western GoM will

experience warmer waters (based on surface temperature) than those spawned in the winter at

the same location and on Georges Bank (Georges Bank cod also spawn in the winter). How-

ever, depth differences during juvenile settlement may also be a factor; spring-spawned juve-

niles settle at greater depths (up to 80 m) and a narrower range of temperatures (<10˚C)

compared with winter-spawned juveniles, which settle in shallower inshore waters (< 30 m) at

a greater range of temperatures (5–15˚C; ref [103]; M. Dean Massachusetts Division of Marine

Fisheries, pers. comm.). Lastly, temperature differences may also be associated with adult

movement patterns if populations differ in their offshore migration patterns and their affinity

for deeper, cooler waters outside of the spawning season. Spring spawning cod in Massachu-

setts Bay move to offshore feeding grounds in the summer and fall, and then overwinter in

deep (>150 m) offshore basins [90]. Further work identifying the inversion haplotypes of the

different spawning aggregations and associating them with life history data is needed to fully

understand the effects of temperature, depth, or migration-driven selection on these spawning

populations.

Eastern GoM

The eastern GoM cod caught by the sentinel fishery showed some of the lowest levels of neutral

genetic differentiation from spawning cod from Ipswich Bay, but this differentiation increased

when outlier loci were included. If we assumed that the cod caught in the eastern GoM were

residents to that area, then this would suggest that there may be a high level of connectivity

between Ipswich Bay and the eastern GoM, and that selection may result in the putatively

adaptive allelic frequency differences that we observed, favoring the genotypes of the winter-

spawned Ipswich cod. One possibility is that cod from Ipswich Bay could have moved in to fill

the vacant niche after spawning aggregations largely disappeared from the eastern GoM [19].
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Alternatively, connectivity may have pre-dated the loss of spawning aggregations in the eastern

GoM and may represent a long-term phenomenon. However, evidence to support high con-

nectivity between eastern and western GoM is lacking. Cod tagged in the western GoM have

rarely been recaptured outside of the western GoM [35,90], supporting the idea of high spawn-

ing site fidelity to the western GoM. An alternative scenario is that the eastern GoM cod we

sampled were from small, remnant spawning aggregations that have persisted in the region

but have gone undetected. Differences at outlier loci on LG11 between both the winter and

spring spawning western GoM cod and the eastern GoM cod point toward a separate origin of

these cod, perhaps as a remnant of the historically larger aggregations.

Compared to Ipswich Bay, the eastern GoM cod showed a higher level of neutral differenti-

ation with Georges Bank cod, suggesting there could be demographic separation of these two

groups. However, putatively adaptive differentiation was low, which may suggest that similar

selection pressures act on cod from eastern GoM and Georges Bank. Perhaps cod in these

areas experience a similar temperature regime resulting from similar oceanographic condi-

tions, or they may exhibit similar habitat preferences. However, we cannot confirm these

hypotheses given the little information we have about these eastern GoM fish and the lack of

known spawning in this region. Tagging studies conducted over the last 40 years have shown

some migratory connectivity between Georges Bank, the Scotian Shelf, and the Bay of Fundy

[34,35]. Few cod with conventional tags have been recaptured in eastern GoM [35], but the

few recaptures likely reflect the relatively low intensity of fishing in the eastern GoM. Fishery-

independent inferences of cod movement from geolocation of archival tags suggest relatively

high connectivity between western and eastern Gulf of Maine is possible during certain sea-

sons [90]. Therefore, cod caught by the sentinel fishery in the eastern GoM could have been

recent migrants from adjacent areas.

Our results do not provide a clear conclusion to the source of the cod caught by the sentinel

fishery in the eastern GoM, because signals of neutral and adaptive genetic variation do not

align to consistently identify them with either the western GoM or Georges Bank spawning

populations. It is also possible that the cod caught in this area today are a mixed stock, result-

ing from foraging migrations of cod that spawn in other areas. Indeed, the samples we ana-

lyzed in this study were collected during a 3-month period (June–August), during which cod

could have moved into this area from different locations (including possibly a mix of Canadian

and U.S. waters). Further studies using genetic data from historical samples (e.g., otolith collec-

tions) pre-dating the collapse of the eastern GoM stocks are needed to definitively test the

hypothesis about demographic separation of this population in the past. These studies could

indicate whether there has been long-term connectivity between eastern GoM and other areas,

which would be informative for investigating potential mechanisms for rebuilding of cod in

the eastern GoM.

Implications for stock structure

The patterns of fine-scale population structure that we found have been confirmed by several

studies [23,24,28] and are in contrast to the current two stock strategy for assessment and

management. This strategy groups all eastern and western GoM cod into one stock, and cod

from southern New England to Georges Bank into a second, southern stock (Fig 1). After con-

ducting an interdisciplinary review, Zemeckis et al., [20] suggested that there may be five sepa-

rate subpopulations of cod in US waters. These subpopulations correspond to: 1) an eastern

Georges Bank population that spawns in the winter and early spring; 2) a northern spring

coastal complex that spawns in the spring in Ipswich Bay, Massachusetts Bay, and Bigelow

Bight; 3) a southern complex that includes winter spawners from Ipswich Bay, Massachusetts
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Bay, and Jeffreys Ledge, early-spring spawners from Stellwagan Bank, and winter spawners

from Nantucket Shoals, the Great South Channel, southern New England and the Middle

Atlantic; 4) a mid-coast GoM population; and 5) an eastern GoM population. The latter two

subpopulations were defined by Ames [19] and are now severely depleted, with no spawning

observed in these areas for the last two decades. Our results provide further evidence consis-

tent with the metapopulation model proposed by Zemeckis et al., [20] and show that the cur-

rent GoM stock encompasses multiple, genetically distinct sub-populations that likely harbor

different local adaptations. The lack of recognition in the current management system of the

two seasonally distinct western GoM subpopulations and a third possibly distinct subpopula-

tion in eastern GoM may put this biocomplexity at risk.

Despite high dispersal potential in marine species at either larval or adult stages, local adap-

tation is common (e.g., purple sea urchin, Strongylocentrotus purpuratus [104], grey reef

sharks, Carcharhinus amblyrhynchos [105], hamlet fish, Hypoplectrus spp., [106]) and local

adaptation has often been linked to temperature (e.g. American lobster, Homarus americanus,
[107], sea scallops, Placopecten magellanicus, [108], northern shrimp, Pandalus borealis,
[109]). Conserving locally adapted populations should be a high priority for fishery managers,

because the functional aspect of adaptive genetic diversity is arguably more important to pre-

serve than neutral genetic diversity [8]. Adaptive genetic diversity is also one of the compo-

nents that determines the adaptive capacity of species and populations [12], because species

with higher genetic diversity (both neutral and adaptive) have a greater probability of surviving

rapid environmental change through adaptation. Atlantic cod are likely to be severely affected

by the rapid warming of the Gulf of Maine, which has warmed faster than 99% of the global

ocean [44]. Therefore, preserving adaptive genetic diversity, especially if it is linked to thermal

regime, is likely going to be critical for this species into the future.

Preserving population diversity or biocomplexity is also critical for fishery stability and

resilience by providing diverse responses to the environment [5,15,16]. Portfolio effects,

whereby a high diversity of discrete populations reduces the variability in a stock [5,11], can

provide stability and resilience in fisheries [15]. The loss of Atlantic cod spawning components

[19] has likely impacted the productivity and stability of the population and the fishery target-

ing this resource. Furthermore, the adaptive differences among spawning populations suggest

that the potential for severely depleted populations to recover through migration from other

spawning populations could be limited, because immigrants may have low fitness due to lack

of suitable local adaptations [110]. Accordingly, preservation of the remaining biocomplexity

of Atlantic cod within the Gulf of Maine and Georges Bank should be considered in future

fishery management efforts.
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